Maths Mastery Recognise When It Is Possible to Use Formulae for Area and Volumes of Shapes

Rectangles

The formula for the area of a rectangle is:
$A=a b$, where a and b are the
length of the sides.

A room is $3 \mathrm{~m} \times 4 \mathrm{~m}$ and 3 m high. Use the formula to calculate surface area of the walls, ignoring any windows or doors.

If the doorway is 2 m high and 1 m wide, and the window is 2 m wide and 2 m high, what is the surface area of the walls?

In a small group, share how you calculated the answers, and write some similar problems involving calculating area for each other.

Cubes

The formula for the volume of a cube is:

$$
\begin{gathered}
V=a^{3}, \text { where } a \text { is length of } \\
\text { the edges. }
\end{gathered}
$$

A set of nested boxes has 6 boxes. The smallest box has an edge of 1 cm , with each box larger by 1 cm . What is the volume of the smallest and largest cube?
What is the volume of all the cubes put together?

Share your answers with a partner. Discuss where else you would use this formula to calculate the volume of different cubes.

Cuboids

The formula for the volume of a cuboid is:
> $\mathrm{V}=\mathrm{abc}$, where a, b and c are the length of the edges.

A food supplier wants to pack 12 tins in a box. The tins are 10 cm tall and the diameter of the top is 5 cm . Investigate the different size cuboid shaped boxes that could be used? For example, what size box would hold 12 cans in a line?

This box would be
$60 \mathrm{~cm} \times 5 \mathrm{~cm} \times 10 \mathrm{~cm}=3000 \mathrm{~cm}^{3}$

